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SuMMARY. The goal of this article is to describe a two-stage design that maximizes the power to detect
gene—disease associations when the principal design constraint is the total cost, represented by the total
number of gene evaluations rather than the total number of individuals. In the first stage, all genes of
interest are evaluated on a subset of individuals. The most promising genes are then evaluated on additional
subjects in the second stage. This will eliminate wastage of resources on genes unlikely to be associated
with disease based on the results of the first stage. We consider the case where the genes are correlated and
the case where the genes are independent. Using simulation results, it is shown that, as a general guideline
when the genes are independent or when the correlation is small, utilizing 75% of the resources in stage 1 to
screen all the markers and evaluating the most promising 10% of the markers with the remaining resources
provides near-optimal power for a broad range of parametric configurations. This translates to screening all
the markers on approximately one quarter of the required sample size in stage 1.
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with breast cancer risk. To address these questions, investi-
‘ | gators have planned a study to compare the frequencies of
polymorphisms among breast cancer patients with and with-
| out an inherited BRCA mutation. The study subjects will be
| women affected with breast cancer. The association between a
BRCA mutation and an SNP will be determined by recording
the presence of the mutation and the polymorphism in these
study subjects. This test will be carried out for many SNPs.
Approximately 1500 anonymous SNPs and several known can-
didate polymorphisms will be analyzed and their frequencies
compared among the two groups of individuals (patients with
and without a BRCA mutation). The polymorphic variants to
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jects will not be feasible. In this case, the one-stage design
would involve evaluating all the m markers on T/m individ-
uals. However, this can be inefficient in resource utilization
since it may require large numbers of evaluations of genes
that can be identified early in the study as extremely unlikely
to be the true disease gene.

Consider, instead, optimization of the following two-stage
design. In stage 1, screen all m genes on a set of n; individ-
uals using the test statistic where the numbers of cases and
controls in this subset of n1 are chosen in proportion to their
relative frequency in the full set of available subjects. Rank
the genes based on the absolute value of the test statistic.
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The probabilities P1 and P» (equations (6) and (7)) can be
evaluated using Monte Carlo simulation for given values of i,
7, and p.

6. Power Function for Correlated Gene Outcomes

In practice, the assumption of independent gene outcomes
within subjects may not be even approximately true when
testing multiple markers. Gene outcomes can be correlated
due to various phenomena such as genetic linkage and loss
of heterozygosity (evolutionary causes) and allele frequency
and marker density (recombination). Correlation (denoted p)
due to recombination can be easily quantified (Feller, 1966).
Here we focus only on the aggregate correlation rather than
correlation due to specific causes.

Under the assumption of independence, the true gene out-
comes have a mean of u, while the null gene outcomes have
a mean of zero. However, when we cannot assume indepen-
dence, the null genes in the neighborhood of the true genetic
locus need not have a mean of zero since the mean outcome
will be influenced by the correlation between the null and the
true genes. Therefore, the mean outcome of the null genes will
reduce to zero as a function of correlation as one moves away
from the neighborhood of the true gene.

As defined in the previous section, let (X1, X2) denote the
true gene outcomes in stages 1 and 2, respectively, normally
distributed with mean (uni,pn) and covariance matrix
(given by equation (4)). Further, let Y7, u =1,...,m — 1,
denote the linear ordering on the genome of the null gene out-
comes under stage 1. Similarly, let Yo, u = 1,...,mi — 1,
denote the outcomes of the selected null genes in their lin-
ear order to be evaluated in stage 2. The true gene (having
outcomes X7 and Xo in stages 1 and 2, respectively) can be
located anywhere along the genome. When addressing the de-
sign question, we consider the simple case where we assume
that the correlations between adjacent pairs of loci are equal.
As stated earlier, the true gene has mean pni and variance
n1 in stage 1 and mean pn and variance n after stage 2.
Therefore, the uth null gene away from the true gene has
mean punip” and variance ny in stage 1 and mean pnp* and
variance n after stage 2. The mean of each of the null genes
approaches zero as the correlation between the true and the
null genes decreases.

The power P = Py x Py for this setting can be described
as follows. In stage 1, P; is the probability that X is among
the top mi gene outcomes. Let ¢*(-) denote the density of
Y(m—mi), which denotes the (m — mi)th ordered null gene
outcome in stage 1. The density g*(-) depends on the mean
I, sample size n1, and the correlation p.

Therefore, the probability P} can be written as

Py =/ g W)[1 — F1(y; pn1,n1))dy. (8)

— o0
P5 is the probability that Xs is greater than -each of the

m — mi null gene outcomes in stage 2, conditional upon the
results of stage 1. Hence, Py can be written as

<um—mi

Py = P<X2 > ) max {Ya,}|X1> Y(m—mi)>

i Y; > Yim—mi) |- 9
lsurﬁn’rlrrl,l—nn{ l,u} (m ml)) ( )

As in the previous case, the probabilities P, and P» can be
evaluated using a Monte Carlo simulation for varying values
of i, 7, and p.

7. Results
7.1 Optimal Two-Stage Design for a Single True Gene

The power function discussed in the previous section can be
used to provide guidelines for optimizing the study design.
The power function can be maximized with respect to 1,
the proportion of genes selected for validation, and j, the
proportion of resources allocated for stage 1, for given values
of T, m, and u. Further clarification of resource allocation is
possible by expressing it in the context of the total sample
size and the proportion of individuals allocated to stage 1.
The number of individuals in a one-stage design is given by
T/m, and that of a two-stage design is [j + (1 — j)/4]T/m.
The ratio of the number of individuals required for a two-
stage design to the number required for the one-stage design,
for fixed T and m, is thus given by j + (1 — 7)/i. Note that
the proportion of individuals in a two-stage design allocated
to stage 1 is given by /(35 + 1 — 7).

In our simulations, power is calculated for p = 0, 0.10, 0.20,
0.40, 0.60, 0.80, 0.90, and 0.98, where p is the correlation
between adjacent genes and p = 0 corresponds to the
case of independent gene outcomes. For the purpose of our
simulations, the signal p is calculated for cases where a one-
stage design testing independent markers will have 30, 40,
50, or 60% power. Table 1 summarizes the results of these
simulations for m = 3000 and T'/m = 5000. Row (a) gives
the maximum power of the two-stage design. The numbers
in paréntheses in row (b) give the design parameters ¢ and j
at which the maximum power is obtained. Figures 1 and 2
provide a graphical representation of m = 1000, T'/m = 500,
= 0.120, and m = 100, T'/m = 100, p = 0.275, respectively.
The bold line in the figures give the maximum power of the
two-stage design. The design parameters ¢ and j at which the
maximum power is obtained are shown below the horizontal
axis. As correlation between the genes decreases, the power
of the optimal two-stage design tends toward that of the
independent gene outcomes for all combinations of T', m, and
p. Further, for fixed correlation, power increases as the signal
(1) increases.

The results show that over a broad range of values of T, m,
and p in the case of independent gene outcomes (p = 0.0), the
optimal design parameters are in the range of i € (9%, 15%)
and j € (63%, 76%). The power of this optimal design is very
close to a design where i = 10% and j = 75%. Therefore, as a
general rule, when the genes are independent, sufficient power
can be obtained by allocating approximately 756% (j) of the
resources for screening in stage 1 and by validating the top
10% of the genes () in stage 2. In the case of correlated gene
outcomes, the optimal design parameters are in the range of
i€ (1%,22%) and j € (52%,82%). Applying the above rule-
of-thumb design to the correlated gene outcome case, we find
that this design provides a sufficient approximation to the
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Table 1
Power of one- and two-stage designs for m = 3000, T/m = 5000, and values of p = 0.120, 0.130, 0.145, and 0.155
for increasing values of correlation between adjacent markers. Row (a) gives the mazimum power of the optimal
two-stage design. Row (b) gives the optimal parameters (4, §). Row (c) gives the power corresponding to a rule-of-thumb
two-stage design (when i = 0.10 and j = 0.75). Row (d) gives the power of o one-stage design. Row (e) gives the

power (and percentage increase in cost) when using a one-stage design where the total number of individuals is fived.
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Figure 1. Power of one- and two-stage designs for m =
1000, T'/m = 500, and values of = 0.120 for increasing values
of correlation between adjacent markers. The bold line shows
the maximum power of the optimal two-stage design. Optimal
parameters (4 and j) are shown below the horizontal axis. The
dotted line shows the rule-of-thumb two-stage design (when
i = 0.10 and j = 0.75). The dashed line gives the power of
a one-stage design. The value of y = 0.120 corresponds to a
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Figure 2. Power of one- and two-stage designs for m = 100,
T/m = 100, and values of p = 0.275 for increasing values
of correlation between adjacent markers. The bold line shows
the maximum power of the optimal two-stage design. Optimal
parameters (¢ and j) are shown below the horizontal axis. The
dotted line shows the rule-of-thumb two-stage design (when
i = 0.10 and j = 0.75). The dashed line gives the power of

a one-stage design. The value of p = 0.275 corresponds to a
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Table 2

Power to detect all five true genes of association using
one- and two-stage designs in the presence of m = 3000,
1000, and 100 independent markers and T'/m = 5000.
~ Column (a) gives the mazimum power of the optimal
two-stage design. Column (b) gives the optimal parameters

(4, 7). Column (c) gives the power corresponding to

a rule-of-thumb two-stage design (when i = 0.10 and

= 0.75). Column (d) gives the power of a one-stage design.

Two-Stage Designs

m b (a) (b) () (d)
3000 0061 098  (0.09,082) 096  0.30
' 0064 099  (0.12,0.80) 098  0.40

0066 099  (0.12,0.81) 098  0.50
0069 099  (0.150.75) 099  0.60
1000  0.056 095  (0.12,0.82) 092  0.30
0.059 098  (0.12,0.80) 095  0.40
0062 098  (0.19,0.76) 097  0.50
0.065 099  (0.12,085) 098  0.60
100 0.046 076  (0.14,0.81) 056  0.30
0.0485 0.81  (0.14,0.85) 067  0.40
0.051 087  (0.14,0.85) 073  0.50
0.054 091  (0.14,0.85)  0.80  0.60

baseline cost per chip), then the total cost of the study given
by equation (1) would be modified as T = nim + nomi +
C x (n1 + ng2). Maximizing the power using this cost function
could alter the optimal design parameters. However, note that
= nim(14+C/m)-+ngm(i+C/m). The fraction C/m repre-
sents the relative cost of ascertaining an individual to the cost
of genotyping that individual (m, the total number of markers
evaluated per study subject, is the total cost of genotyping an
individual, assuming a unit cost for each marker genotype).
If C < m, then T =~ nym + nomi, and the results presented
in the previous section can be applied. Another issue con-
tributing to C could be the availability of sufficient cases,
particularly when the disease is rare.

If the total number of individuals (N) is fixed (and m, the
total number of genes, is given), then the optimal design is
to perform all m gene studies on every individual. It is perti-
nent to pose the following question in this setting. How much
power do we lose by using our rule-of-thumb design versus
performing all m gene studies on all N individuals? This is
: 4
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expect the test statistics of 3000 equally spaced markers to be
more correlated than 100 equally spaced markers in a fixed ge-
nomic region. For studies of isolated populations where link-
age disequilibrium extends across a distance of 30-50 kilo-
bases (i.e., correlation between loci in a distance of 30-50 kilo-
bases), it can be anticipated that less than 100,000 markers
will be required to identify candidate regions of gene/disease
association (Boehnke, 2000). Therefore, having 3000 equally
spaced markers over the entire genome would result in mark-
ers with very low correlation. While the actual correlations
can only be estimated from the observed data at the end of
the study, broader assumptions about the correlations must
be used in the setting of study designs. Often these assump-
tions can be based on a priori knowledge about the markers
from previous studies, if such information is available.

After examining Table 1 and Figures 1 and 2, the similarity
in power between the optimal two-stage design and the rule-
of-thumb design is clearly shown. Furthermore, it is clear that
the one-stage design has much lower power. Therefore, when
the principal design constraint is total cost, as represented by
the total number of gene evaluations, the rule-of-thumb two-
stage design gives a pragmatic approach that provides most
of the power achieved by a one-stage design at a fraction of
the cost.
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RESUME

Le but de cet article est de décrire une stratégie d’étude & deux
étapes qui maximise la puissance de détection d’associations
géne-maladie quand la principale contrainte est le cofit total,
représenté par le nombre total d’évaluations de génes plutdt
que le nombre total d’individus. Dans la premigre étape, tous
les génes d’intérét sont évalués sur un sous-groupe d’individus.
Les génes les plus prometteurs sont alors évalués sur d’autres
sujets dans la deuxietme étape. Ceci évitera de gaspiller du
matériel sur des génes ayant une faible probabilité d’étre as-
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